
Inspiring Better Banking
www.finacle.com

Microservices Mastery:
The patterns and the path
to effective system design

Decoding why banks must take a strategic approach
to succeed with microservices-based architecture

Contents

01 03

02 04

05
Monoliths are
a passe’, the
microservices
era is here

The
microservices
journey is
fraught with
complexities

Perfecting the
microservices
journeys: The
pattern-based
strategies

Architecting
microservices with
domain driven
design (DDD)

Unlock with Finacle:
True microservices
and cloud native
powered digital
banking

2 | External Document © 2024 EdgeVerve Systems Limited

Preface
In today’s rapidly evolving banking landscape, agility, scalability, and innovation
are more critical than ever. This report, “Microservices Mastery: The patterns
and the path to effective system design,” aims to equip banking executives
with a comprehensive understanding of how microservices architecture,
leveraging key design approches and proven patterns, can revolutionize core
banking systems to meet modern demands.

Historically, banking systems have relied on monolithic architectures—large,
interconnected applications that are now increasingly seen as impediments
to progress. These systems, once effective, now struggle to keep up with the
pace of digital transformation and the rising expectations of customers and
regulators. There is a clear need for modernization, and microservices-based
architecture offers a compelling solution.

Microservices break down banking applications into smaller, modular
services, each responsible for a specific functionality. This decomposition
enhances agility, scalability, and resilience, allowing banks to adapt quickly
to changes. However, the world of microservices is complex and presents
several challenges, such as managing distributed systems, countering latency,
maintaining data consistency, steering deployments with stability, among
others. Overcoming these and several other challenges requires strategic
planning and a deep understanding of the intricacies involved.

To navigate these complexities, leveraging established microservice
patterns is crucial. These patterns offer proven solutions to common issues
in microservices environments, ensuring a coherent and well-organized
architecture. By strategically applying these patterns, banks can create robust,
scalable, and maintainable systems capable of continuous improvement. The
report discusses a handful of patterns, demonstrating their relevance, the
approach to adopt them, the benefits proposition, and the caution points to be
wary about. Throughout these discussions, several critical system attributes are
explored as well. Effective system design requires careful consideration of those
attributes and the necessary trade-offs based on the digital banking application
context. By adopting a pattern-based microservices approach, banks can build
high-performing systems that are responsive to modern business demands.

Domain-driven design (DDD) is another essential approach discussed. DDD
aligns microservices with business needs, facilitating effective system design
that enhances both agility and maintainability. The report also highlights
how Infosys Finacle’s cloud-native, true microservices-based digital banking
platform exemplifies these design considerations, enabling banks to deliver
next-generation services.

“Microservices Mastery” aims to provide you with the insights and strategies
needed to navigate the transformative journey of microservices, empowering
your institution to achieve excellence in system design and delivery.

3 | External Document © 2024 EdgeVerve Systems Limited

Monoliths are a passe’,
the microservices era
is here
Historically, banking systems have relied on monolithic architectures,
where all banking functions are tightly integrated into a single,
monolithic application. While this approach served its purpose in the
past, it has become a bottleneck in today’s fast-paced digital landscape,
hindering banks’ ability to innovate and adapt to changing market
dynamics. The traditional monolithic architecture that once underpinned
core banking systems is facing unprecedented challenges. There’s a
growing imperative for banks to modernize their architecture, with the
rise of digital transformation and the evolving expectations of customers.

Enter microservices-based architecture, a paradigm shift that holds the
key to unlocking agility, scalability, and resilience in the banking sector.
Microservices offer a compelling alternative to the monolithic model,
advocating for the decomposition of banking applications into smaller,
modular services, each responsible for specific banking functionalities. This
granular approach not only facilitates agility and scalability but also enables
banks to respond swiftly to customer demands and regulatory changes.

01

4 | External Document © 2024 EdgeVerve Systems Limited

The promise of micro services
Microservices based architecture provides the right
foundations for banking operations, enabling banks
to innovate rapidly, enhance customer experiences,
and maintain a competitive edge in the digital era.
The key propositions include:

Scalability and flexibility

In today’s banking world, scalability is paramount.
Microservices architecture allows banks to scale
individual services independently based on demand,
thereby optimizing resource utilization and ensuring
optimal performance during peak transaction
volumes. This elastic scalability is particularly crucial
in handling fluctuating customer traffic and seasonal
banking activities.

Agility and innovation

Banking landscapes are constantly evolving, driven
by technological advancements and changing
consumer expectations. Microservices empower
banks to innovate at speed, as changes can be
implemented and deployed to individual services
without disrupting the bank’s IT ecosystem. This

agility enables banks to roll out new products and
services swiftly, staying ahead of the competition and
meeting the ever-changing needs of customers.

Resilience and security

With cybersecurity threats on the rise, ensuring
the resilience and security of banking systems is
paramount. Microservices architecture enhances
resilience by isolating failures to specific services,
preventing system-wide outages and minimizing
the impact of security breaches. Additionally, banks
can implement robust security measures at the
service level, bolstering the overall security posture
of their digital banking platforms.

Microservices - the growing
imperative
As banking continues its digital transformation
journey, the relevance of microservices-based
architecture in the banking sector is growing
exponentially. From legacy banks to fintech
startups, embracing microservices is no longer a
choice but a necessity for stayingcompetitive in an
increasingly digital banking landscape.

5 | External Document © 2024 EdgeVerve Systems Limited

02 The microservices
journey is fraught with
complexities
Microservices architecture, while offering significant benefits, presents
a set of formidable challenges that require careful navigation. As
banks and financial institutions embrace this architectural paradigm,
the complexities they encounter demand strategic solutions and
diligent management.

6 | External Document © 2024 EdgeVerve Systems Limited

Following are a few intricate situations, in real-world operations:

The distributed dilemmas

The very essence of microservices architecture, which entails
composing applications with independent services, introduces a layer
of complexity. Managing intricate dependencies between numerous
services necessitates meticulous planning and robust communication
protocols. This distributed nature can create hurdles in comprehending
overall system behavior and troubleshooting issues.

The management overheads

Deploying, monitoring, and maintaining a multitude of independent
services creates a multifaceted challenge. Infrastructure provisioning,
configuration management, and service health monitoring become
more intricate, demanding additional resources and specialized
tooling. This overhead requires ongoing attention to ensure efficient
system operation.

Performance optimizations: Countering latency

Microservices often communicate through APIs, introducing network
calls that can impact performance. As data traverses the network
between services, latency can emerge, potentially leading to sluggish
user experiences and reduced responsiveness. Optimizing network
communication and minimizing latency are crucial considerations for
ensuring a performant microservices landscape.

Data consistencies: A key challenge

Monolithic systems traditionally house data in a centralized location,
ensuring consistency. However, microservices often manage their
own data stores. This distributed data management introduces the
challenge of maintaining data consistency across services, especially
during transactions that span multiple microservices. Implementing
robust consistency mechanisms is paramount for data integrity.

Deployments: Balancing change and stability

Microservice deployments necessitate a delicate steering – embracing
change while maintaining stability. While automation can streamline
the process, the risk of introducing regressions or service disruptions
during deployments remains a constant concern. Rigorous testing
strategies and rollback mechanisms are essential to mitigate these risks.

Resource optimizations: Combating fragmentation

Microservices can lead to resource fragmentation. Each service
consumes its own share of processing power, memory, and storage,
potentially leading to underutilized resources across the system.
Implementing resource optimization techniques and containerization
technologies can help ensure efficient utilization.

7 | External Document © 2024 EdgeVerve Systems Limited

The complex and plausible real-
world scenarios in banking
Poorly designed microservices can lead to a
cascade of problems that can cripple applications.
The following two scenarios depicts what one
might encounter:

Scenario 1 – In a microservices-based
digital lending platform

Consider the following:

	■ �The system fails to handle a surge in loan
applications during a promotional period,
leading to performance degradation and
timeouts. Scalability, the key concern.

	■ �Credit score calculation crashes frequently,
causing interruptions in loan processing.
Reliability, the key concern.

	■ �During a server maintenance window, the
application experiences unexpected downtime,
making the lending services unavailable to
users. Availability, the key concern.

	■ �Integrating a new third-party credit scoring
service requires significant changes across
multiple microservices, revealing the system’s
inflexibility. Flexibility, the key concern.

	■ �The system cannot process high volumes
of loan applications simultaneously, leading
to bottlenecks and delayed approvals.
Throughput, the key concern.

	■ �A vulnerability exposes sensitive customer data,
resulting in a data breach. Security, the key
concern.

	■ �Incurs high operational costs due to extensive
use of cloud resources and third-party services.
Cost-effectiveness, the key concern.

Each of them illustrates potential pitfalls in the
design, implementation, and operation of the
digital lending application, emphasizing the need
for careful planning and robust practices when
adopting microservices based architecture.

8 | External Document © 2024 EdgeVerve Systems Limited

Scenario 2 – In a microservices-based digital payments
platform

Consider the following:

	■ �During Black Friday or other seasonal sales, the system fails to
handle a sudden spike in transactions, causing performance
degradation and transaction failures. Scalability, the key concern.

	■ �The transactions validation is slow due to inefficient database
queries, resulting in delayed payment processing. Performance,
the key concern.

	■ �Changes in the payment gateway integration service require
unexpected modifications. Poor modularity, the key concern.

	■ �The application faces issues integrating with a new international
payment processor due to incompatible data formats and
protocols. Interoperability, the key concern.

	■ �The application cannot gracefully handle the failure of a non-
critical functionality, causing a complete system outage.
Resilience, the key concern.

	■ �A vulnerability in payments authentication exposes user
credentials, leading to unauthorized access and data breaches.
Security, the key concern.

	■ �Lack of proper logging and monitoring makes it difficult to
diagnose and resolve issues, leading to prolonged outages of
payments services. Observability, the key concern.

Each of the examples highlights potential challenges and failures in
a digital payments application built on a microservices architecture,
emphasizing the need for a diligent approach.

9 | External Document © 2024 EdgeVerve Systems Limited

Thereby, it’s about crafting a
system design that excels in
every facet!
Creating a robust micro-services architecture
demands a meticulous consideration of
various system attributes. Scalability ensures
seamless handling of increasing loads, while
reliability and availability guarantee consistent
service delivery. Flexibility allows adaptation to
changing requirements, while performance and
throughput optimize resource utilization and
responsiveness. Security safeguards sensitive
data, while maintainability and modularity
ease system upkeep and development.
Interoperability enables seamless integration,
and usability ensures intuitive user experiences.
Portability facilitates deployment across
diverse environments, while simplicity

reduces complexity! Documentability aids in
understanding and troubleshooting, while
resilience ensures system continuity. Cost-
effectiveness optimizes resource allocation, and
adaptability fosters responsiveness. Testability
validates functionality, and efficiency maximizes
performance. Consistency maintains data
integrity, while observability aids in system
monitoring. Lastly, feedback loops enable
continuous improvement based on user input
and operational insights. Integrating these
several attributes ensures a well-rounded micro-
services architecture that excels in functionality,
reliability, security, and adaptability.

But how can one effectively achieve the
multitude of system design attributes? That’s
precisely the focal point of the upcoming
chapter’s discussion!

10 | External Document © 2024 EdgeVerve Systems Limited

03 Perfecting the
microservices journeys:
The pattern-based
strategies
Microservices architectures represent a robust methodology for
developing intricate applications by decomposing functionality into
discrete, autonomous services. This decomposition endows systems with
enhanced scalability, agility, and maintainability. However, the inherently
distributed nature of microservices presents significant challenges,
including increased complexity in communication, data management,
and system orchestration.

11 | External Document © 2024 EdgeVerve Systems Limited

To navigate these challenges and construct
an optimal microservices architecture,
leveraging established microservice design
patterns is essential. These patterns, proven
through extensive use, address recurrent issues
encountered in microservices environments.
Implementing a patterns-based approach
effectively addresses critical system attributes
such as scalability, resilience, maintainability, and
many others.

Strategically applying these patterns results
in a microservices architecture that is not only
coherent and well-organized but also robust
and capable of handling growth and change
over time. This approach empowers technology
teams to accelerate feature delivery and adapt
swiftly to evolving requirements, fostering
an environment of continuous improvement

and responsiveness. Consequently, a well-
patterned microservices architecture facilitates
the creation of sophisticated, high-performing
banking applications that meet modern business
demands.

There are several microservices patterns across
various categories. In the rest of this chapter,
a few are discussed in detail to highlight
their contextual relevance, the approach to
implementing them, the benefits they offer,
cautionary points to consider, and the scenarios
where each pattern is most applicable. Patterns
are also referred to as design constructs
interchangeably throughout the discussions.

12 | External Document © 2024 EdgeVerve Systems Limited

The strangler pattern
The context

The strangler pattern in microservices architecture is a strategy used
during the process of migrating from a monolithic application to a
microservices-based architecture. The term “strangler” refers to the way
in which the new architecture grows around the existing one, gradually
replacing it until the old system is completely decommissioned
or “strangled.” It allows for the continued delivery of features and
improvements to the existing system while gradually transitioning to a
more scalable and maintainable microservices architecture. Additionally,
it provides flexibility in terms of prioritizing which parts of the monolith
to replace first based on business needs and technical feasibility.

P
A

TT
E

R
N

13 | External Document © 2024 EdgeVerve Systems Limited

The approach

Here’s the approach for adopting the strangler pattern in
a microservices architecture:

	■ ��Lay the groundwork: Analyze the monolithic
application to identify functionalities that are well-
suited for becoming microservices. Prioritize these
based on business value and ease of migration.
Design clear APIs for the new services and plan how
data will be managed across both systems.

	■ �Build the bridge: Develop a facade application, the
“strangler,” that acts as an intermediary. This facade
routes requests to either the monolith or the newly
developed microservices based on defined criteria.
Consider a phased rollout of the facade to gradually
introduce the microservices.

	■ �Strangle incrementally: Develop and deploy
microservices one by one, focusing on the prioritized
functionalities. Migrate functionalities from the
monolith to the microservices gradually, shifting
traffic away from the monolith and towards the new
services. Rigorous testing, monitoring is the key.

	■ �Retirement and simplification: As microservices
take over more functionalities, deprecate the use of
the monolith. Once it’s no longer critical, consider
refactoring or decommissioning it entirely. This will
streamline the architecture and free up resources.

The benefits proposition

Adopting the strangler pattern in microservices architecture offers several
key benefits:

	■ �Incremental transition: Allows for a gradual migration from a
monolithic architecture to a microservices architecture. This reduces the
risk associated with a big-bang approach.

	■ �Continuous delivery: By breaking down the migration into smaller,
manageable pieces, the approach supports an agile development
process, allowing for more frequent releases and quicker responses to
market changes or customer needs.

	■ �Business continuity: The existing monolithic application remains
operational throughout the migration process, ensuring that business
operations are not disrupted.

	■ �Scalability and flexibility: As components are migrated to
microservices, they can be independently scaled based on demand,
improving the overall scalability of the system. The architecture becomes
more flexible, allowing for easier updates, maintenance, and integration
of new technologies.

	■ �Technology heterogeneity: The pattern allows for the use of different
technologies and tools for new microservices, without being constrained
by the technology stack of the monolithic application.

	■ �Better alignment with domain-driven design: The migration process
can be guided by domain-driven design, ensuring that microservices are
aligned with business domains and processes.

	■ �Reduced technical debt: Gradually replacing parts of the monolith allows
for addressing and eliminating technical debt in a controlled manner.

14 | External Document © 2024 EdgeVerve Systems Limited

The caution points

Adopting the strangler pattern in a microservices-based architecture
involves several challenges and potential pitfalls. Here are key points:

	■ �Complexity of proxy layer: A proxy layer to route requests can add
significant complexity. Ensuring that this layer is performant and
doesn’t become a bottleneck is crucial.

	■ �Data consistency and integrity: Managing data consistency across
the monolith and microservices can be challenging. Implementing
eventual consistency models and handling data synchronization can
add complexity.

	■ �Inter-service communication: Differences in protocols, data formats,
and communication styles (synchronous vs. asynchronous) can
get complicated. Ensuring reliable communication and handling
potential latencies and failures is critical in strangler process.

	■ �Security concerns: With more services and points of interaction, the
attack surface increases. Implementing consistent security policies
and practices across the monolith and microservices is necessary.

	■ �Technical debt: While the strangler pattern helps manage
technical debt by gradually replacing the monolith, there’s a risk of
accumulating new technical debt if microservices are not properly
designed and maintained. Regularly reviewing and refactoring
microservices is essential.

	■ �Testing and quality assurance: Ensuring comprehensive testing
of both the monolith and microservices is crucial. This includes unit
tests, integration tests, and end-to-end tests. As microservices are
introduced, regression testing becomes more complex but is highly
essential to safeguard functionality.

When is this the right option?

The strangler pattern is a recommended approach in the
journey towards a microservices architecture, particularly
when dealing with legacy monolithic systems that pose
challenges in maintenance, scalability, and extensibility. It
offers a structured and low-risk strategy to modernize the
architecture incrementally, reducing technical debt and
improving agility.

15 | External Document © 2024 EdgeVerve Systems Limited

The saga pattern
The context

The saga pattern is a way to primarily address the challenges of
data consistency in distributed business transactions that spans
microservices by breaking them into smaller, manageable local
transactions and providing mechanisms for coordination and
compensation. This design construct allows microservices to work
together to ensure the overall consistency of a business transaction
in a distributed environment.

P
A

TT
E

R
N

16 | External Document © 2024 EdgeVerve Systems Limited

The approach

	■ �Choreography: In this approach, each microservice in
the saga is responsible for its own local transactions
and emits events to signal the success or failure of
those transactions. Other microservices listen to these
events and react accordingly, advancing the overall
saga. It offers flexibility and decentralization, as each
microservice can evolve independently without being
tightly coupled to a central coordinator.

	■ �Object based orchestration: In an object-based
orchestrator, often a separate microservice or
component explicitly coordinates the flow of the saga. It
determines the sequence of steps, communicates with
microservices, and handles the overall coordination and
compensation logic. It provides a centralized view of the
workflow, making it easier to understand and manage. It
also offers better control over the entire process.

The benefits proposition

The saga pattern offers several key benefits in the context of distributed
transactions within a microservices architecture:

	■ ��Maintaining data consistency: The primary goal of the saga design
is to ensure data consistency in distributed transactions, that spans
across microservices.

	■ �Loose coupling: The saga design promotes loose coupling between
microservices. Each microservice is responsible for its own local
transactions, and the interactions are typically based on events or
messages. This loose coupling allows individual services to evolve
independently without direct dependencies on others.

	■ �Fault tolerance: The saga provides mechanisms for handling failures
during the execution of a distributed transaction. If a step in the
saga fails, compensating transactions can be triggered to undo or
compensate for the changes made by the preceding steps, ensuring
that the system remains in a consistent state.

	■ �Scalability: Microservices implementing the saga approach can
scale independently. Each microservice can be scaled horizontally
to handle increased load, and the coordination and communication
between microservices can still be managed effectively.

17 | External Document © 2024 EdgeVerve Systems Limited

	■ �Flexibility and evolvability: The saga
pattern supports flexibility and evolvability
in a microservices architecture. As the
business requirements change, individual
microservices can be modified or added
without significant impact on the overall
system, as long as the coordination and
compensating mechanisms are appropriately
maintained.

	■ �Event-driven architecture: The saga design
often aligns well with an event-driven
architecture. Microservices communicate

through events or messages, facilitating
asynchronous communication and
decoupling between services. This can
improve system responsiveness and
scalability.

While the saga offers these benefits, it’s essential
to carefully consider the specific requirements
and characteristics of a system before choosing
to implement this design. The choice between
choreography and orchestration, for example,
depends on factors like system complexity and
maintainability requirements.

18 | External Document © 2024 EdgeVerve Systems Limited

The caution points

While saga provides benefits in managing distributed transactions that
spans microservices, there are some cautionary considerations that
should be taken into account.

	■ �Complexity of compensation logic: Designing compensating
transactions can be challenging, especially when dealing with
complex business logic. Ensuring that compensating transactions
are capable of reverting changes made by preceding steps requires
careful consideration and thorough testing.

	■ �Increased latency: Coordinating microservices through events may
introduce delays, and this asynchronous nature can impact the overall
response time of the system.

	■ �Monitoring and observability: Monitoring and debugging distributed
systems using the saga design can be challenging. Tools and practices
for monitoring events, tracking the state of sagas, and diagnosing
issues are crucial for maintaining system health and resolving
problems efficiently.

	■ �Data model consistency: Ensuring consistent data models
across microservices is crucial. Changes in the data model of one
microservice might necessitate corresponding adjustments in other
services, and managing these dependencies is important to prevent
data inconsistencies.

	■ �Long-running transactions: Long-running sagas, which involve a
large number of steps, can increase the chances of failures occurring
during their execution. The longer the saga, the higher the likelihood
of partial failures, making it essential to carefully manage and monitor
such transactions.

While the saga design addresses challenges in distributed
transactions, its successful implementation requires
a thorough understanding of the specific system
requirements, careful consideration of potential failure
scenarios, and robust compensating transaction logic.
Thus, developers should carefully weigh the benefits
against the complexities and potential pitfalls when
deciding to adopt a saga-based design!

When is this the right option?

The adoption of a saga-based design is well-suited for
scenarios where microservices architecture demands
coordinated, distributed transactions across multiple
services. It proves effective in systems that favor an
asynchronous communication model, leveraging events
to trigger actions and maintaining loose coupling
between microservices. The design approach is
particularly relevant when compensating transactions
can be employed to handle failures, enabling the system
to recover to a consistent state. Saga-based designs
align with event-driven architectures, support scalability
by allowing independent scaling of microservices, and
accommodate dynamic business processes, making them
adaptable to changing requirements.

19 | External Document © 2024 EdgeVerve Systems Limited

The API gateway
pattern
The context

It’s a design construct or a pattern used in microservices architecture to
provide a single point of entry for client applications to access various
microservices within the system. It abstracts away the complexities of
service-to-service communication, improving security, scalability, and
manageability of the system.

P
A

TT
E

R
N

20 | External Document © 2024 EdgeVerve Systems Limited

The approach

Developing an API gateway for microservices architecture
begins with right technology/tools choice. There are three
ways -

	■ �Open-source tools: Popular choices include Kong, Tyk,
and Apigee. These offer flexibility and customization.

	■ �Cloud-based solutions: Major cloud providers like AWS
(API gateway), Azure (API management), Google Cloud
(Apigee) offer managed services for API Gateways.
These can be convenient but other factors need to be
considered.

	■ �Develop your own: For specific needs and complete
control, one can build own API gateway using a suitable
programming language and framework.

Here’s the general approach:

	■ �Identifying requirements: Listing the specific requirements
including the functionalities the API Gateway has to support,
such as authentication, authorization, rate limiting, and
protocol translation.

	■ �Defining the APIs: Define the APIs that will be exposed by
the API Gateway to clients. This includes determining the
endpoints, methods, request and response formats, and any
additional metadata such as versioning information.

	■ �Implementing routing logic: To map incoming requests
to the corresponding microservices based on the request
URI, headers, or other parameters. This may involve defining
routing rules, configuring routes, and handling dynamic
routing based on service discovery mechanisms.

	■ �Integrating with microservices: Integrate the API Gateway
with the underlying microservices to forward requests to the
appropriate services and aggregate responses if necessary.

	■ �Implementing middleware: To handle common tasks
such as request/response transformation, caching, content
compression, and error handling.

�Handling cross-cutting concerns, implementing monitoring and
analytics, managing for gateway reliability and scalability are the
other design considerations.

21 | External Document © 2024 EdgeVerve Systems Limited

The benefits proposition

Implementing an API Gateway pattern in microservices
architecture offers several key benefits:

	■ �Request routing: Routing incoming requests to the
appropriate microservices based on the request’s endpoint
or content. It can handle load balancing and distribute
requests across multiple instances of a microservice to
ensure scalability and availability.

	■ �Aggregation: Can aggregate and consolidate data from
different microservices to provide a unified response to the
client. This reduces the number of requests a client needs
to make and can improve performance. Call it the API
ergonomics!

	■ �Authentication and authorization: Can validate user
credentials, generate and check tokens, and enforce
access control policies, ensuring that only authorized users
can access specific microservices.

	■ �Security: Can implement security measures such as
SSL termination, request and response validation, and
protection against common security threats like SQL
injection or cross-site scripting.

	■ �Monitoring and logging: Can collect and aggregate logs
and metrics from various microservices, offering insights
into overall health and performance.

	■ �Rate limiting and throttling: To prevent abuse or overuse
of resources, the API gateway can enforce rate limiting
and request throttling. This helps maintain system stability
and prevents individual clients from overwhelming the
microservices.

	■ �Caching: The API gateway can implement caching
strategies to store frequently requested data and reduce
the load on microservices. This improves response times
and reduces the overall latency of the system.

	■ �Transformation and protocol translation: Can
handle the transformation of data formats or translate
between different communication protocols. This allows
microservices to use their preferred data formats or
communication protocols while presenting a standardized
interface to clients.

22 | External Document © 2024 EdgeVerve Systems Limited

The caution points

While implementing the API gateway design in a microservices
architecture, there are several cautions and considerations to keep in
mind.

	■ �Single point of failure: The API gateway becomes a critical
component in the system. If it experiences downtime or
malfunctions, it can disrupt the entire communication flow
between microservices and clients. Implementing redundancy
and failover mechanisms is crucial to mitigate this risk.

	■ �Performance bottleneck: The API gateway can become a
performance bottleneck. Careful consideration must be given to
scalability, load balancing, and optimization to handle increasing
traffic and ensure low-latency responses.

	■ �Service discovery: The API gateway needs to dynamically
discover and adapt to changes in the underlying microservices.
If new services are added or existing ones are removed, the API
gateway must efficiently handle these changes to maintain
proper routing and communication.

	■ �Security concerns: As a central point for authentication and
authorization, the API gateway is a critical security component.
It must be robust against various security threats, and its
configurations should adhere to best practices.

	■ �Data consistency: Aggregating data from multiple microservices
may introduce challenges related to data consistency. The
API gateway should carefully manage scenarios where one
microservice’s data is updated while another is still using a cached
version, potentially leading to inconsistencies.

	■ �Protocol and versioning issues: Microservices may use different
communication protocols or have different API versions. The API
gateway must handle these differences gracefully and ensure
backward compatibility to prevent disruptions when updates or
changes occur.

	■ �Overhead and latency: While providing various functionalities
like authentication, transformation, and aggregation, the API
gateway introduces additional processing overhead. This can
contribute to increased latency in the communication between
clients and microservices. Fine-tuning and optimizing these
processes are essential for maintaining acceptable performance.

When is this the right option?

An API gateway design pattern is to be considered when there
is a complex microservices architecture that requires centralized
management of various concerns, such as security, scalability, and
monitoring. It can streamline communication between clients and
microservices, making systems more manageable and efficient.

23 | External Document © 2024 EdgeVerve Systems Limited

The circuit breaker
pattern
The context

In a microservices architecture, a circuit breaker design monitors the
interactions between microservices, detect failures, and dynamically
adjust its behavior to prevent cascading failures in the system. This
service is crucial for enhancing the resilience of the overall architecture
by isolating failing services and providing a mechanism for graceful
degradation. While the API gateway design pattern focuses on
managing the overall communication flow between clients and
microservices, circuit breaker service complements to create resilient
and efficient applications.

P
A

TT
E

R
N

24 | External Document © 2024 EdgeVerve Systems Limited

The approach

�Integrating a circuit breaker design in a microservices architecture is a
proactive step toward creating a resilient and reliable system. The design
approach entails the following considerations:

	■ �Defining service health metrics: Identifying key metrics along with
thresholds that indicate the health of microservices, such as error
rates, response times, and availability.

	■ �Selecting a circuit breaker library: Choosing a circuit breaker
framework that aligns with the technology stack, such as hystrix,
polly and others.

	■ �Configuring circuit breaker parameters: Defining configurable
parameters such as error thresholds, timeout values, and the
duration a circuit breaker stays in the open state before transitioning
to half-open. It’s important to implement adaptive approach basis
real-time behaviors!

	■ �Integrating circuit breaker logic: Embedding circuit breaker logic
within the microservices that require fault tolerance; implementing
the closed, open, and half-open states.

	■ �Implementing fallback mechanisms: Designing fallback
mechanisms to provide alternative responses or default data when a
circuit breaker is in the open state.

	■ �Monitoring microservices health: Implementing robust monitoring
and logging to continuously observe the health and performance of
microservices.

25 | External Document © 2024 EdgeVerve Systems Limited

The benefits proposition

Enhancing the overall reliability, fault tolerance, and resilience of
the application, circuit breakers in a microservices architecture
provides several key benefits:

	■ �Prevents cascading failures: Helps isolate failing microservices,
preventing the propagation of faults to other parts of the
system - contains widespread outage!

	■ �Offers graceful degradation: By transitioning to a fallback
mechanism when a microservice is in the open state, the
system can gracefully degrade its functionality instead of
completely failing.

	■ �Enhances user experience: Users experience more predictable
and meaningful responses even when certain microservices are
temporarily unavailable.

	■ �Enables adaptive system behaviors: Adaptive strategies
enable adjusting system behavior dynamically based on
changing conditions, in real-time.

�Reduced latency and resource consumption, operational insights
are other key promises of this pattern.

The caution points

While integrating circuit breaker in a microservices architecture
offers numerous benefits, there are key caution points:

	■ �Overhead and complexity: Introduces additional complexity
to the system architecture. So, carefully consider whether the
benefits of fault tolerance outweigh the added overhead and
complexity.

	■ �Proper configuration: Incorrectly configured parameters
such as error thresholds, timeout values, and duration in each
state can lead to suboptimal performance or unintended
consequences (including false positives, false negatives). It’s
crucial to thoroughly test and fine-tune these configurations
for optimal behavior.

	■ �Potential resource exhaustion: In high-throughput systems,
the circuit breaker service itself can become a point of
contention or a bottleneck, especially during periods of heavy
load or when multiple microservices are experiencing issues
simultaneously. Implement mechanisms to prevent resource
exhaustion or contention within the circuit breaker service.

	■ �Vendor lock-in: Depending on the chosen circuit breaker
library or framework, organizations may face vendor lock-in,
limiting flexibility and portability. So, evaluate the long-term
implications and consider alternatives that offer greater
flexibility and interoperability.

26 | External Document © 2024 EdgeVerve Systems Limited

When is this the right option?

The decision to adopt the circuit breaker design
in a microservices architecture hinges on specific
needs and system characteristics. In cases where
the microservices architecture entails intricate
interactions and dependencies, this technique
proves valuable by simplifying fault management
and preventing cascading failures. Additionally,
if the microservices experience unpredictable
workloads, the design becomes crucial in
maintaining system stability during periods

of high traffic. Moreover, for those seeking to
enhance operational efficiency by proactively
handling faults and minimizing manual
interventions would find the technique useful.
These considerations collectively underscore the
importance of evaluating the unique aspects of a
microservices ecosystem to determine whether
the adoption of the circuit breaker aligns with
the system’s requirements and goals.

27 | External Document © 2024 EdgeVerve Systems Limited

The sidecar pattern
The context

The sidecar pattern in a microservices architecture involves deploying
a separate service alongside a primary application. The sidecar service
provides additional functionalities or capabilities to the primary
application without modifying its core logic. This design pattern is
commonly used and typically provides various functionalities such as
monitoring, logging, security, and communication with other services.
Often, the sidecar runs in the same container or in close proximity to the
main application, acting as an extension of it. The sidecar enhances the
flexibility, scalability, and maintainability of microservices architectures by
offloading cross-cutting concerns into separate, modular components.

P
A

TT
E

R
N

28 | External Document © 2024 EdgeVerve Systems Limited

The approach

Designing a sidecar pattern effectively involves careful
consideration of several factors to ensure that it integrates
seamlessly with the main application and provides the
necessary functionalities without introducing unnecessary
complexity. Here’s a step-by-step approach to designing the
sidecar pattern:

	■ �Identifying cross-cutting concerns: Analyzing the
main application to identify cross-cutting concerns,
such as logging, monitoring, security, service discovery,
or communication protocols, that can be offloaded to a
sidecar.

	■ �Defining sidecar responsibilities: Clearly defining the
responsibilities of the sidecar based on the identified
cross-cutting concerns. Each sidecar should have a well-
defined purpose and set of functionalities.

	■ �Choosing deployment strategy: Deciding on the
deployment strategy for the sidecar - as a separate
container alongside the main application, as a separate
process running on the same host, or even as a library
linked directly into the main application.

	■ �Establishing communication mechanism: Defining
the communication mechanism between the main
application and the sidecar - can include inter-process
communication mechanisms such as local network
sockets, shared memory, or RPC (remote procedure call).

	■ �Handling failure scenarios: Implementing appropriate
error handling and recovery mechanisms in both the
main application and the sidecar – examples include
implementing retry logic, circuit breakers, or graceful
degradation to handle failures gracefully.

Managing security considerations, and implementing
monitoring and metrics collection in the sidecar pattern are
also important aspects.

29 | External Document © 2024 EdgeVerve Systems Limited

The benefits proposition

The sidecar pattern offers several benefits in the context of
microservices architectures:

	■ �Modularity and separation of concerns: By separating cross-
cutting concerns into sidecar modules, the main application’s
codebase remains focused on its core functionality. This
improves code maintainability, readability, and testability by
isolating different concerns into separate components.

	■ �Isolation and independence: Since sidecar can be
developed, deployed, and managed independently of the
main application, it greatly reduces complexity and potential
conflicts between different concerns and allows teams to
work on different functionalities in parallel.

	■ �Scalability and performance optimization: Sidecar instances
can be scaled independently from the main application,
allowing for fine-grained control over resources and
performance optimization.

	■ �Flexibility and agility: The pattern enables the addition
of new functionalities or changes to existing ones without
modifying the main application - thus promotes flexibility
and agility in development and deployment.

	■ �Enhanced security: By centralizing security functionalities in
sidecar modules, teams can ensure consistent enforcement
of security policies across all services without the need for
duplication or manual configuration.

	■ �Improved observability and monitoring: Sidecars can
handle tasks such as logging, monitoring, and metrics
collection, providing real-time visibility into the performance
and health of the microservices architecture.

	■ �Service discovery and load balancing: By maintaining
a registry of available services and distributing incoming
requests across multiple instances, sidecars improve fault
tolerance, resilience, and scalability of the overall system.

	■ �Cross-language compatibility: The sidecar pattern allows
teams to implement functionalities in different programming
languages or frameworks than the main application, thereby
enabling teams to leverage existing libraries, tools, and
expertise without being constrained by the technology stack
of the main application.

30 | External Document © 2024 EdgeVerve Systems Limited

The caution points

While designing sidecar constructs in the microservices
architecture, it’s important to consider several cautions to ensure
the effectiveness, maintainability, and scalability:

	■ �Resource overhead: Adding a sidecar to each microservice
can increase resource consumption, such as CPU, memory,
and network bandwidth. Carefully consider the resource
requirements of each sidecar and monitor resource utilization.

	■ �Complexity and dependency management: Introducing
multiple sidecar instances can increase complexity in
deployment, configuration, and dependency management.
Ensure that dependencies between the main application and
sidecar modules are well-defined and properly managed.

	■ �Latency and network overhead: Inter-process
communication between the main application and sidecar
can introduce latency and network overhead, especially
in distributed environments. Optimize communication
protocols, data serialization formats, and network
configurations to minimize latency and maximize throughput.

	■ �Failure isolation and resilience: Sidecar failures should be
isolated from the main application to prevent cascading
failures and ensure the resilience of the system. Implement

fault tolerance mechanisms such as circuit breakers, retries,
and graceful degradation to handle sidecar failures.

	■ �Security risks: Sidecars can introduce security risks if
not properly configured or secured. Implement security
best practices such as least privilege access, secure
communication protocols, and regular security audits to
mitigate security risks.

	■ �Versioning and compatibility: It’s important to ensure that
sidecar modules are designed with backward and forward
compatibility in mind to support rolling upgrades, version
transitions, and heterogeneous environments.

When is this the right option?

The sidecar pattern is a strong choice when there is a need to
offload non-core functionalities, standardize practices across
services, achieve dynamic scaling for specific tasks, or enable
independent deployments in a polyglot environment.

31 | External Document © 2024 EdgeVerve Systems Limited

The service
mesh pattern
The context
The service mesh pattern is a design approach used in microservices
architectures to handle the complexities of service-to-service
communications. It involves deploying a dedicated infrastructure
layer of lightweight network proxies, also known as sidecars, alongside
each microservice instance. These sidecars manage and facilitate
communication between services, providing a centralized control plane
for routing, security, monitoring, and other cross-cutting concerns.
Service mesh provides a way to reliably and efficiently connect, manage,
and secure microservices across distributed applications.

P
A

TT
E

R
N

32 | External Document © 2024 EdgeVerve Systems Limited

The approach

Setting up a service mesh pattern involves several
steps to deploy the necessary infrastructure,
configure communication between microservices,
and enable various features such as traffic
management, security, and observability. Here are
few key considerations:

	■ �Selecting a service mesh platform: Entails
choosing a service mesh platform basis the
factors such as features, compatibility with
existing infrastructure, community support, and
ease of integration. Popular options include Istio,
Linkerd, and Consul Connect.

	■ �Preparing the infrastructure: Ensuring that the
microservices are containerized and deployed
in a container orchestration platform such as
Kubernetes or Docker Swarm.

	■ �Deploying sidecar proxies: Involves installing
the sidecar proxies alongside each microservice
instance. This can be done manually or
automatically using tools provided by the chosen
service mesh platform.

	■ �Configuring service mesh control plane:
Setting up the control plane components
such as control plane APIs, service discovery,
and configuration management to define
routing rules, traffic policies, security policies,
and observability settings.

	■ �Enabling traffic management: Defining
traffic management policies such as routing
rules, traffic splitting, and load balancing,
along with configuring canary deployments,
blue-green deployments, or other
deployment strategies as needed.

	■ �Setting up observability: Configuring
monitoring, logging, and distributed tracing
to gain insights into the behavior and
performance of microservices using built-in or
third-party observability tools.

Implementing the right security measures,
monitoring the performance and scalability of
service mesh deployments are the other key
design considerations.

33 | External Document © 2024 EdgeVerve Systems Limited

The benefits proposition
The service mesh pattern offers several benefits for managing
communication between microservices in a distributed application:

	■ �Centralized control and management: Service mesh
provides a centralized control plane for managing and
configuring communication between microservices.
Thus, it simplifies administration, reduces complexity, and
enables consistent policies Across the entire microservices
architecture.

	■ �Traffic management and load balancing: Service mesh
facilitates optimal distribution of traffic across microservice
instances, improving performance, and resource utilization.

	■ �Enhanced security: Service mesh enhances security by
providing encryption, authentication, and authorization
mechanisms for service-to-service communication.

	■ �Observability and monitoring: Service mesh provides insights
into service behavior, performance, and dependencies,
facilitating debugging, optimization, and monitoring of the
microservices architecture.

	■ �Resilience and fault tolerance: Service mesh implements
resilience patterns such as circuit breaking, retries, and
timeouts to handle failures gracefully, thereby improving
application reliability and fault tolerance.

	■ �Multi-platform support: Service mesh can be deployed across
different infrastructure platforms, including Kubernetes, VMs,
and bare-metal servers, thus enabling organizations adopt
microservices architectures across diverse environments and
technology stacks.

	■ �Simplified development and deployment: Service mesh
abstracts away many of the complexities associated with
microservices communication, allowing developers to focus
on building and deploying individual services.

34 | External Document © 2024 EdgeVerve Systems Limited

The caution points

Here are some caution points to consider when designing a
service mesh:

	■ �Increased complexity: While service mesh simplifies
development for individual services, it introduces an
additional layer of complexity to overall system architecture.
Management and troubleshooting becomes intricate due to
the distributed nature of the service mesh.

	■ �Operational overhead: Setting up, configuring, and
maintaining a service mesh requires additional operational
overhead. This includes tasks like monitoring the health of
the service mesh itself, managing sidecar deployments, and
handling potential configuration issues.

	■ �Performance impact: Adding a sidecar proxy to each
microservice can introduce some overhead in terms of
resource consumption and potential latency. It’s important
to carefully evaluate the performance impact on specific
workloads.

	■ �Learning curve: There’s a learning curve associated with
understanding and effectively utilizing service mesh pattern.
The development and operations teams will need to invest
time in learning the chosen service mesh implementation
and best practices.

	■ �Security considerations: While service mesh can
enhance security, it introduces new attack surfaces.
Proper configuration of authentication, authorization, and
encryption policies is crucial to avoid security vulnerabilities.

	■ �Not a silver bullet! Service mesh is a powerful tool, but
it’s not a one-size-fits-all solution. It’s best suited for
complex microservices architectures where managing
communication becomes a challenge. For simpler
architectures, the overhead of a service mesh might
outweigh the benefits.

	■ �Vendor lock-in: While the service mesh pattern itself is
vendor-neutral, specific implementations might have
dependencies on certain tools or platforms.

When is this the right option?

A service mesh is an ideal addition to a microservices architecture
in scenarios where there’s a complex landscape of microservices
with intricate communication patterns, necessitating centralized
management. Where there is a need for advanced traffic
management capabilities, enhanced security and compliance,
comprehensive observability, scalability, and systems resilience,
service mesh offers compelling propositions.

35 | External Document © 2024 EdgeVerve Systems Limited

The health check APIs
The context

Health check APIs, also known as health monitoring endpoints or
health probes, are a type of API endpoint or interface that allows
applications, underlying services to report their operational status or
health to external entities, typically monitoring tools or other software
components within the same ecosystem. Health check APIs are
commonly used in distributed systems, microservices architectures,
cloud computing environments, and containerized applications where
multiple components need to communicate with each other. They
enable continuous monitoring and help in detecting and responding
to issues or failures promptly. Considered as a design pattern within the
microservices architecture, these APIs offer a quick and automated way
to assess the overall health and availability of a system.

P
A

TT
ER

N

36 | External Document © 2024 EdgeVerve Systems Limited

The approach

Setting up health check APIs involves several steps to ensure that they
accurately reflect the operational status of the services they represent.
Below are some of the key considerations:

	■ �Defining health check endpoints: Entails deciding on the
endpoint(s) where health status will be exposed. Typically, this is an
HTTP endpoint reachable by monitoring systems and other services
within the ecosystem. Common endpoints include `/health`, `/
healthcheck`, or similar.

	■ �Choosing health check response format: Determining the format
of the response that the health check endpoint will return. This could
be a simple JSON response, plaintext, or any other suitable format.

	■ �Defining health check criteria: Establishing the criteria that
may include checking database connectivity, external service
dependencies, CPU and memory usage, disk space, or any other
relevant metrics.

	■ �Implementing health check logic: Developing the logic within
service that evaluates the health check criteria and generates the
appropriate response. This logic may involve querying dependencies,
performing self-checks, or evaluating system metrics.

	■ �Handling dependency checks: If the service depends on other
services or resources, make sure to include checks for these
dependencies in the health check logic.

Configuring health check frequency, handling unhealthy states, securing
health check endpoints are some of the other key considerations.

37 | External Document © 2024 EdgeVerve Systems Limited

The benefits proposition

As a construct or a pattern in microservices-based
architectures, health check APIs offer several key
benefits and play a role in contributing to the
reliability, scalability, and manageability of the
system. Some of them include:

	■ �Improved reliability and fault tolerance:
By promptly detecting failures or issues at
granular level, health check APIs facilitate
quick response mechanisms such as automatic
failover, rerouting of traffic, or restarting
of failed services. This helps in minimizing
downtime and ensuring high availability of the
overall system.

	■ �Autoscaling and load balancing: Health check
APIs provide real-time information about
the capacity and availability of microservices.
This can be used to dynamically adjust
resource allocation and distribute incoming
traffic among healthy instances, optimizing
performance and resource utilization.

	■ �Decentralized architecture: In a microservices
architecture, services are designed to be
loosely coupled and independently deployable.
Health check APIs align with this decentralized
approach by allowing each microservice
to manage and report its health status
independently. This promotes autonomy and
resilience!

	■ �Enhanced development and deployment
practices: By integrating health checks into
the development and deployment pipelines,
teams can ensure that new releases or updates
are thoroughly tested for compatibility and
stability before being deployed to production
environments.

	■ �Scalability and elasticity: Health check
APIs support the scalability and elasticity
requirements of modern applications.
As the workload fluctuates, services can
dynamically scale up or down based on
demand, while health checks ensure that only
healthy instances receive traffic, maintaining
performance and reliability.

38 | External Document © 2024 EdgeVerve Systems Limited

The caution points

While health check APIs offer numerous benefits, there are several
caution points to consider to ensure they are implemented effectively
and do not introduce unintended complexities or risks into the
system. Some of them are:

	■ �Overhead and performance impact: May introduce additional
overhead, especially if it involves resource-intensive operations
or queries. It’s essential to carefully design and optimize health
check logic to minimize performance impact, particularly in
high-throughput or latency-sensitive systems.

	■ �False positives and negatives: Health checks may sometimes
produce false positive or false negative results, incorrectly
indicating the health status of a service. False positives can lead
to unnecessary alerts or actions, while false negatives may result
in delayed detection of issues. It’s crucial to tune health check
criteria and thresholds appropriately.

	■ �Dependency management: If the dependencies themselves
are unhealthy or experiencing issues, it may lead to cascading
failures or incorrect health assessments. Carefully manage
dependencies and consider fallback mechanisms or alternative
health check strategies to mitigate such scenarios.

	■ �Security considerations: Health check endpoints expose
operational information about the system, which could be
exploited by malicious actors to gather intelligence or launch
attacks. Ensure that health check APIs are appropriately secured!

	■ �Monitoring tool compatibility: Different monitoring tools or
frameworks may have varying requirements or expectations
for health check APIs. Ensure that health check endpoints are
compatible with the monitoring systems used.

	■ �Continuous maintenance: Health check APIs require
ongoing maintenance and monitoring to remain effective.
Regularly review and update health check criteria, response
formats, and monitoring configurations as the system
evolves.

When is this the right option?

Health check APIs are a recommended design pattern for
microservices architectures. They act like checkups for the services,
monitoring their health and dependencies. By implementing
health checks, one can proactively identify issues within individual
microservices and prevent them from cascading across the entire
system. While there are some cautionary points like overhead
and security concerns, the advantages outweigh the drawbacks
in most cases. If unsure about using health checks, it’s generally
better to implement them for the increased visibility and
maintainability they offer.

39 | External Document © 2024 EdgeVerve Systems Limited

The database per
service pattern
The context

The database per microservice pattern or construct is a design approch
within microservices architecture where each microservice has its
own dedicated database. In this pattern, typically, each microservice is
responsible for managing its own data storage and schema. This stands
in contrast to the traditional monolithic architecture where a single
database serves multiple components or services. The approach facilitates
decentralized data management, enabling efficient scaling, flexibility in
database technologies, and independent evolution of microservices.

P
A

TT
E

R
N

40 | External Document © 2024 EdgeVerve Systems Limited

The approach

Implementing a database per service approach in a microservices
architecture involves several key considerations:

	■ �Domain-driven design: Begin by identifying the domain
boundaries and business contexts of the application. Align
database design with these bounded contexts to ensure that
each microservice has a database schema that reflects its
specific domain responsibilities!

	■ �Database technology selection: Choose appropriate
database technologies for each microservice based on
its requirements, such as relational database, NoSQL, or
specialized databases. Consider factors like data volume,
access patterns, scalability requirements, and consistency
models.

	■ �Data consistency strategies: Implement consistency
strategies such as eventual consistency, distributed
transactions, or compensating transactions based on the
needs of individual microservices and their interactions.

	■ �Service contracts: Clearly define the contract between each
microservice and its database, including data access patterns,
API endpoints, and data formats. Use techniques such as API
versioning and documentation.

	■ �Data access patterns: Design data access patterns tailored
to the specific requirements of each microservice. Consider
factors such as read vs. write operations, data volume,
latency, and consistency.

	■ �Inter-service communication: Implement communication
mechanisms such as RESTful APIs, messaging queues, or
other techniques for inter-service communication. Define
clear boundaries and responsibilities between services to
minimize dependencies and facilitate loose coupling.

	■ �Monitoring and observability: Implement monitoring and
observability solutions to track the health, performance, and
behavior of each microservice and its associated database.
Use metrics, logs, and distributed tracing to identify and
troubleshoot issues effectively.

Determining data partitioning strategies for each microservice’s
database, planning for data migration and evolution as
microservices and their schemas evolve are some of the other
key considerations.

41 | External Document © 2024 EdgeVerve Systems Limited

The benefits proposition

The database per microservice pattern offers
several key advantages:

	■ �Isolation and encapsulation: Since each
microservice has its own dedicated database,
it promotes better separation of concerns
and reduces the risk of unintended data
access or modification by other services,
enhancing overall system reliability and
security.

	■ �Autonomy and independence:
Microservices are autonomous entities, and
having a dedicated database for each service
aligns well. It promotes polyglot persistence!

	■ �Scalability: With each microservice having
its own database, it becomes easier to scale
each component independently based
on its unique workload and performance
requirements.

	■ �Flexibility and agility: Since each
microservice manages its own database
schema, it can evolve independently
from other services - The flexibility allows
for easier modifications, updates, and
optimizations without impacting the entire
system!

	■ �Reduced complexity and coupling:
Having a database per service reduces the
complexity and coupling between services
since each service operates independently
with its own data store.

	■ �Improved fault isolation: In case of failures
or errors within a microservice, having a
dedicated database ensures that the impact
is limited to that specific service. This
improves fault isolation and resilience.

Enhanced security and compliance, performance
optimization are other key benefits.

42 | External Document © 2024 EdgeVerve Systems Limited

The caution points

While the database per microservice pattern offers numerous benefits,
there are also several caution points and challenges to be wary of:

	■ �Data consistency: Ensuring data consistency across microservices
with separate databases can be challenging. Need to carefully
design and implement consistency models, distributed transactions,
or eventual consistency strategies to maintain data integrity.

	■ �Increased operational complexity: Managing multiple databases
adds operational overhead, including provisioning, deployment,
monitoring, backups, and maintenance tasks. Resource
consumption overhead is yet another concern.

	■ �Data duplication: With each microservice having its own database,
there may be instances of data duplication or redundancy across
services. It’s important to avoid inconsistencies and unnecessary
storage costs.

	■ �Cross-service joins and queries: Performing joins and queries
that span multiple microservices’ databases can be inefficient and
complex. The design should minimize cross-service dependencies
and optimize data access patterns to reduce latency and improve
performance.

	■ �Synchronization and versioning: Synchronizing schema changes
and version upgrades across multiple databases can be challenging.

Managing backup and disaster recovery processes, security and access
controls, evolving data schemas and migrating data across microservices’
databases, performance bottlenecks due to inefficient database queries,
resource contention, or hotspots are some of the other key issues.

When is this the right option?

The database per microservice design is a suitable
choice in scenarios where each microservice demands
a high degree of autonomy over its data and business
logic. This design approach proves advantageous
when there are diverse data storage needs among
microservices, allowing each service to choose a
database technology that aligns with its specific
requirements. Additionally, it is well-suited for situations
where microservices exhibit varying scalability demands,
enabling independent scaling based on individual
needs without affecting other services. The design’s
ability to accommodate these considerations makes it
a valuable option in microservices architectures where
autonomy, flexibility, and scalability are key priorities.

43 | External Document © 2024 EdgeVerve Systems Limited

The command query
responsibility segregation
(CQRS) pattern
The context

CQRS is a design pattern commonly used in microservices architecture
to separate the responsibilities of handling read (query) and write
(command) operations. In a traditional CRUD (create, read, update,
delete) architecture, a single data model handles both read and write
operations. However, in complex systems with evolving requirements
and scalability needs, this approach can become cumbersome.
CQRS addresses this by segregating the responsibilities of handling
commands and queries into separate components. By separating
concerns and enabling independent optimization of read and write
operations, CQRS enhances scalability, flexibility, and maintainability in
complex systems.

P
A

TT
E

R
N

44 | External Document © 2024 EdgeVerve Systems Limited

The approach

Achieving the CQRS pattern in a microservices architecture involves
several key steps and considerations:

	■ �Identifying domain boundaries: Here, different domains
represent a distinct area of functionality with its own set of
commands and queries.

	■ �Defining command and query contracts: Commands
represent actions that modify the state of the system, while
queries represent operations that retrieve data without
modifying the state. These contracts should specify the inputs,
outputs, and behavior of each command and query.

	■ �Implementing command-side services: Creating
microservices responsible for handling commands within each
domain. These services should encapsulate the business logic
associated with processing commands and updating the state
of the system accordingly.

	■ �Implementing query-side services: Creating microservices
responsible for handling queries within each domain. Consider
using denormalized views, caching strategies, and other
optimization techniques to improve query performance.

	■ �Deciding on data storage: In a CQRS architecture, it’s common
to use different data storage mechanisms - a relational
database for the command side to ensure transactional
consistency, and a NoSQL database or specialized data stores
for the query side to optimize read operations.

	■ �Synchronizing data between command and query sides:
Since the command and query sides operate independently,
it will need mechanisms to synchronize data between them.
This can be achieved through event sourcing, where changes
to the system’s state are captured as a series of immutable
events. Command-side services publish events, which are then
consumed by query-side services to update their data stores.

	■ �Handling asynchronous communications: Using messaging
systems or event-driven architectures to enable asynchronous
communication between command and query services.
Consider using technologies like Apache Kafka, RabbitMQ for
reliable message delivery.

	■ �Ensuring consistency and resilience: Entails implementing
mechanisms such as idempotent command processing,
eventual consistency, and error handling strategies. Use
compensating transactions or other mechanisms to handle
failures and maintain system resilience.

45 | External Document © 2024 EdgeVerve Systems Limited

The benefits proposition

The CQRS pattern offers several benefits in the
context of software architecture, particularly in
microservices environments. Here are some key
advantages:

	■ �Improved scalability: Since commands and
queries have different characteristics (write-
heavy vs. read-heavy), they can scale each side
independently to handle fluctuations in traffic
without impacting the other. This enables
efficient resource utilization and better overall
system scalability.

	■ �Optimized performance: The query side can
be optimized for fast data retrieval by using
denormalized views, caching, or specialized data
stores, while the command side can focus on
ensuring transactional integrity and business
logic enforcement.

	■ �Flexibility and maintainability: CQRS promotes
a clear separation of concerns between
commands and queries, which simplifies the
design and maintenance of the system. Each
side can be developed, tested, and deployed
independently, allowing for greater flexibility.

	■ �Better domain modeling: CQRS encourages
a domain-driven design approach, where
the domain model is based on the business
requirements and concepts. Defining commands
and queries within each domain allows to create
expressive and focused model that closely aligns
with requirements.

	■ �Support for event sourcing: CQRS is often
used in conjunction with event sourcing, where
changes to the system’s state are captured as
a series of immutable events. This approach
enhances system reliability, resilience, and
traceability, making it easier to diagnose and
recover from errors.

	■ �Enhanced security and compliance: Separating
read and write operations can improve security by
limiting access to sensitive data and operations.
Additionally, event sourcing provides a tamper-
evident log of all state changes, which can be
valuable for auditing and compliance purposes.

46 | External Document © 2024 EdgeVerve Systems Limited

The caution points

While the CQRS pattern offers various benefits, there are also some
caution points and challenges to consider when adopting it:

	■ �Increased complexity: Implementing CQRS introduces
additional complexity to the system architecture. It will require
separate models, data stores, and communication channels for
commands and queries. This complexity can make the system
harder to understand, develop, and maintain.

	■ �Consistency challenges: Maintaining consistency between
the command and query sides can be challenging, especially
in distributed systems. Since commands and queries operate
independently, it will need mechanisms to synchronize data
between them. Ensuring eventual consistency and handling
concurrency issues requires careful design and may involve
trade-offs in terms of performance and scalability.

	■ �Data synchronization overhead: Keeping the command and
query sides synchronized can introduce overhead, especially
in scenarios with high write throughput or complex data
transformations. Event sourcing, which is often used with CQRS,
adds to additional complexity and infrastructure overhead.

	■ �Operational complexity: CQRS can increase operational
complexity, particularly in terms of deployment, monitoring,
and debugging. With multiple services and data stores involved,

it will need effective tooling and processes for managing
deployments, monitoring system health, and diagnosing
issues. Adopting CQRS may require additional investments in
infrastructure, automation, and operational expertise – costs
overhead too!

	■ �Performance considerations: CQRS can introduce
performance overhead due to data synchronization, event
handling, and increased network communication. It will require
optimizations to minimize latency and maximize throughput,
especially in high-volume or latency-sensitive applications.

When is this the right option?

CQRS is a valuable pattern for microservices architectures handling
a significant disparity between reads and writes, or expecting
high scalability. It separates read and write operations, allowing
independent optimization and scaling for each workload. This is
ideal for applications with complex queries or needing different
data storage options for read and write models. However, the added
complexity of managing separate models and eventual consistency
considerations make it best suited for applications that can benefit
from these trade-offs.

47 | External Document © 2024 EdgeVerve Systems Limited

The backend for
frontend pattern
The context

The backend for frontend (BFF) pattern enhances the efficiency
and flexibility of microservices based architectures, especially when
dealing with diverse frontend applications. It allows for a focused
and tailored interaction between the frontend and its dedicated
backend service, contributing to a better user experience and
improved development agility.

P
A

TT
E

R
N

48 | External Document © 2024 EdgeVerve Systems Limited

The approach

The BFF’s primary objective is clear separation of concerns. The
design approach entails the following key considerations:

	■ �Defining the frontend needs: Identifying the specific data
and functionalities each frontend application requires from the
backend is the first step. This analysis helps designing the APIs
tailored for each frontend’s consumption patterns.

	■ �Designing the APIs: It includes planning the BFF APIs -
defining endpoints, data formats, authentication mechanisms,
and error handling specific to each frontend’s needs.

	■ �Backend integrations: Mainly focuses on developing the BFF
service logic to interact with various backend microservices.
The BFF acts as an orchestrator, fetching data from relevant
services and potentially aggregating or transforming it for the
frontend’s consumption.

	■ �Frontend integrations: This is about integrating the BFF APIs
into frontend applications. This involves making API calls from
the frontend code to fetch and utilize the processed data
provided by the BFF.

49 | External Document © 2024 EdgeVerve Systems Limited

The benefits proposition

The BFF in a microservices architecture offers the
following key benefits:

	■ �Decoupling frontend and backend:
The frontend and backend can evolve
independently, promoting flexibility and
maintainability.

	■ �Specialized APIs: This allows the frontend
to request only the data and functionality it
requires, reducing over-fetching and improving
performance.

	■ �User experience optimization: BFFs are
designed to optimize the user experience by
tailoring responses to the frontend’s specific
requirements.

	■ �Performance and responsiveness: With
a backend for a frontend design, the
communication between them can be
optimized for performance, reducing
unnecessary data transfer and processing.

	■ �Cross-cutting concerns: BFFs may handle
cross-cutting concerns such as authentication,
authorization, logging, and caching, which
are specific to the needs of the associated
frontend.

	■ �Development autonomy: Different teams can
work on frontend and backend components
independently, leading to faster development
cycles and easier maintenance.

50 | External Document © 2024 EdgeVerve Systems Limited

The caution points

While BFF offers advantages for microservices architecture, there are some
potential concerns to be wary about:

	■ �Avoid overly complex BFFs: While it’s important to tailor the BFF
pattern adoption to the needs of the frontend, avoid making it overly
complex. Strive for simplicity and clarity in BFF service design to ease
maintenance and troubleshooting.

	■ �Versioning and compatibility concerns: Changes to the BFF
should not break existing frontend implementations! Implement
proper versioning mechanisms for BFF APIs to ensure backward
compatibility.

	■ �Granularity of APIs: APIs that are too fine-grained might lead to
over-fetching, while overly coarse-grained APIs could result in under-
fetching and reduced efficiency. Consider the granularity of APIs
provided by the BFF. Striking the right balance is crucial.

	■ �Caching strategies: While caching can enhance performance,
be cautious about the data being cached. Ensure that the cache
is appropriately invalidated or refreshed to reflect changes in the
underlying microservices.

	■ �Failure handling: Implement robust error-handling mechanisms
in the BFF to gracefully handle failures. Provide meaningful error
messages and consider fallback strategies to maintain a good user
experience even in the face of service failures.

	■ �Scalability: Plan for the scalability of the BFF design. Ensure that it
can handle increased loads from the frontend without compromising
performance. Implement strategies for horizontal scaling if necessary.

When is this the right option?

Adopting the Backend for Frontend (BFF) microservices
pattern proves to be a strategic decision when specific
priorities shape the application design. This choice is
particularly beneficial in scenarios where multiple frontends
are integral to the application, and the desire is to craft
specialized backends meticulously tailored to meet the
unique requirements of each frontend. It becomes a
compelling option when separate development teams
govern various frontends, seeking autonomy in the design
and evolution of their respective applications. Furthermore,
BFF shines when the frontend necessitates precise
data and functionality spanning multiple microservices,
preventing issues associated with over-fetching or under-
fetching. Also, in applications with performance-critical
demands, where optimizing communication between the
frontend and backend is paramount, the implementation
of BFF emerges as a crucial strategy to ensure efficiency
and responsiveness. If one or more of these considerations
are key priorities for the application, then adopting the BFF
pattern and related design approch becomes imperative.

51 | External Document © 2024 EdgeVerve Systems Limited

04 Architecting
microservices with
domain driven design
(DDD)
DDD is an approach to software development that emphasizes
understanding the domain (the problem space) and using that
understanding to inform the design and implementation of software.
When applied to microservices architecture, DDD helps in creating
cohesive, well-organized microservices that closely align with the
business domain they serve. Albeit considered as a design pattern, it is
more accurately described as a set of practices and approch rather than
a specific implementation pattern. DDD guides developers in structuring
software systems in a way that reflects the domain they’re working
with. While DDD is more abstract than traditional design patterns, it still
provides a structured approach to solving problems related to software
design and architecture, especially in domains with complex business
rules and interactions.

52 | External Document © 2024 EdgeVerve Systems Limited

Essential steps and strategies for adopting domain
driven design

When implementing Domain-Driven Design (DDD) in a
microservices architecture, the focus is on creating a system of
loosely coupled microservices that reflect the bounded contexts,
entities, and business processes of the domain. The approach entails:

	■ �Identifying bounded contexts: A bounded context
represents a specific area of the business domain with its own
language, rules, and models. Each bounded context will likely
correspond to a separate microservice in the architecture.

	■ �Defining ubiquitous language: Establishing a common
language that is shared between the stakeholders. This
language should accurately represent the concepts and terms
within each bounded context.

	■ �Decomposing the monolith: If migrating from a monolithic
architecture, decompose the monolith into smaller, more
manageable microservices, based on bounded contexts.

	■ �Designing aggregates: Within each microservice, identify
aggregates, which are clusters of domain objects (entities)
that are treated as a single unit for data changes. Design
aggregates to enforce consistency boundaries and
encapsulate business rules within the microservice.

	■ �Defining service interfaces: Determine how microservices
will communicate with each other. Define clear service
interfaces (API contracts) for each microservice, specifying the
data formats and protocols used for communication.

	■ �Establishing context mapping: Define the relationships and
interactions between microservices. Use context mapping
techniques to handle communication between bounded
contexts, such as shared kernel, customer-supplier, or anti-
corruption layer patterns.

	■ �Implementing business logic: Encapsulate domain-specific
behavior within the microservice, using domain events,
aggregates, and domain services.

	■ �Ensuring data consistency: Using patterns such as eventual
consistency, distributed transactions, or saga patterns to
manage data updates and ensure data integrity across
microservices.

	■ �Deploying and scaling microservices: Entails using tools and
enablers for containerization (e.g., Docker) and orchestration
(e.g., Kubernetes).

53 | External Document © 2024 EdgeVerve Systems Limited

Domain driven design offers several benefits
propositions

Applying DDD in a microservices architecture can yield several
key benefits:

	■ �Alignment with business goals: By aligning microservices
with bounded contexts and ubiquitous language, the
architecture closely reflects the business domain leading to
software that better meets business requirements.

	■ �Modularity and scalability: DDD encourages breaking
down complex systems into cohesive components
(microservices) based on bounded contexts.

	■ �Flexibility and agility: DDD based microservices architecture
promotes flexibility and agility in software development.
Each microservice can be developed, deployed, and scaled
independently, enabling faster iterations.

	■ �Improved team collaboration: By using a common
ubiquitous language and modeling the domain explicitly,
teams can communicate effectively and ensure a shared
understanding of the system’s behavior and requirements.

	■ �Domain-driven modeling: DDD provides patterns and
techniques for modeling complex domain concepts, such
as aggregates, entities, value objects, and domain events.
This improves the maintainability and extensibility of the
system over time.

	■ �Reduced complexity and coupling: By defining clear
boundaries between bounded contexts and microservices,
teams can minimize dependencies and coupling, making
it easier to understand and modify individual parts of the
system without impacting others.

	■ �Scalability and resilience: Encourages the use of patterns
like event sourcing and eventual consistency, which can
improve fault tolerance and resilience.

	■ �Technology flexibility: Microservices architecture with
DDD enables technology heterogeneity within the system.
Different microservices can be implemented using
different technologies and programming languages,
chosen based on the specific requirements of each
bounded context.

54 | External Document © 2024 EdgeVerve Systems Limited

Navigating domain driven design requires
careful deliberations

Here are some cautionary points to consider
when adopting DDD patterns in a microservices
architecture:

	■ �Increased complexity: For large or evolving
domains, the process of defining bounded
contexts, identifying entities and aggregates,
and establishing a ubiquitous language can
become complex. It requires careful planning
and collaboration.

	■ �Overengineering: While DDD provides
valuable tools, it’s easy to get caught up in the
details of domain modeling. Models should be
clear and maintainable.

	■ �Distributed transactions: DDD doesn’t
inherently solve challenges with distributed
transactions across microservices. It will require
additional mechanisms like saga patterns to
meet data consistency requirements.

	■ �Bounded context drifts: As the system
evolves, bounded contexts can drift over
time. The key is to revisit and refine bounded
contexts often.

	■ �Communication overhead: While
DDD promotes a ubiquitous language,
communication overhead can still arise
between microservice teams, especially during
initial development stages. Invest in clear
documentation and communication channels
to foster collaboration.

Synergizing domain driven design and
microservices

When dealing with intricate domain logic, large
applications, or evolving requirements where data
consistency is crucial, DDD can be a powerful tool
for building robust and scalable microservices. DDD
offers a structured approach to decompose domain
into manageable chunks, aligning perfectly with
the microservices philosophy. For maintainable, and
scalable microservice architectures, DDD offers a
powerful approach.

55 | External Document © 2024 EdgeVerve Systems Limited

05 Unlock with Finacle:
True microservices and
cloud native powered
digital banking
Finacle is an industry leader in digital banking solutions. We partner
with emerging and established financial institutions to inspire better
banking. Our cloud-native solution suite and SaaS services help
banks engage, innovate, operate, and transform better to scale digital
transformation with confidence.

Finacle solutions address the core banking, lending, digital
engagement, payments, cash management, wealth management,
treasury, analytics, AI, and blockchain requirements of financial
institutions globally. Finacle’s componentized structure allows banks
to deploy and upgrade solutions flexibly as per their business priorities.
Our solutions run in a containerized environment orchestrated by
Kubernetes and can be deployed on a private, public, or hybrid cloud.

56 | External Document © 2024 EdgeVerve Systems Limited

Finacle’s composable banking platform is built on the foundations of
a 100% open architecture, embracing true microservices architectural
thinking. Fueled by domain driven design constructs, the platform offers
right grained microservices tailored to the business domains they support.

Rooted in pattern language, the platform’s microservices design ensures
the delivery of efficient, precisely-tailored components perfectly suited to
the unique requirements of each business domain.

	■ �A host of data strategy patterns ensure consistency and seamless
querying across services, pivotal for system integrity, scalability and
performance.

	■ �A variety of integration, messaging and communication patterns
seamlessly connect services, manage communications, and drive
integrations to leverage the full potential of microservices.

	■ �The deployment automation and scalability patterns provide
optimal microservices deployment, addressing resource utilization,
isolation, cross-cutting concerns, population-scale performance, and
operational complexities.

	■ �The observability and performance management patterns deliver on
optimal behavior, performance and resilience of the microservices.

Through persistent R&D investments, adoption of modern technology
components, and continuous innovation, Finacle’s composable
architecture has stood the test of time throughout our existence.
Consequently, Finacle has consistently earned recognition as the most
advanced cloud-native banking platform by multiple analyst firms.
Finacle’s cloud-native, microservices based architecture empowers banks
and financial institutions worldwide to future-proof their technology
investments and deliver next-gen banking services to their customers.

57 | External Document © 2024 EdgeVerve Systems Limited

Authors

Diwakar Mandal
Product Marketing Manager,
Infosys Finacle

Sudhindra Murthy
Product Marketing Lead,
Strategic Initiatives, Infosys Finacle

58 | External Document © 2024 EdgeVerve Systems Limited

finacle@edgeverve.com

www.finacle.com

www.linkedin.com/company/finacle

twitter.com/finacle

© 2024 EdgeVerve Systems Limited, a wholly owned subsidiary of Infosys, Bangalore, India. All Rights Reserved. This documentation is the sole property of EdgeVerve Systems Limited (“EdgeVerve”). EdgeVerve believes the information in this
document or page is accurate as of its publication date; such information is subject to change without notice. EdgeVerve acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual
property rights mentioned in this document. This document is not for general distribution and is meant for use solely by the person or entity that it has been specifically issued to and can be used for the sole purpose it is intended to be used
for as communicated by EdgeVerve in writing. Except as expressly permitted by EdgeVerve in writing, neither this documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, printing, photocopying, recording or otherwise, without the prior written permission of EdgeVerve and/ or any named intellectual property rights holders under this document.

For more information, contact finacle@edgeverve.com www. finacle.com
. .

. .

